md-medicaldata


Go to content

AKTUELNI DIFERENCIJALNO DIJAGNOSTIČKI PROBLEMI I PATOFIZIOLOŠKI MEHANIZMI RAZVOJA MIGRATORNOG ERITEMA KOD LAJM BORELIOZE – PREGLEDNI RAD /
CURRENT DIFFERENTIAL DIAGNOSTIC PROBLEMS AND PATHOPHYSIOLOGICAL MECHANISMS OF THE MIGRATORY ERYTHEMA DEVELOPMENT IN LYME BORRELIOSIS - REVIEW

Authors

 

Pavle Banović1,2, Dragana Mijatović 1,3, Dejan Ogorelica2,4, Nenad Vranješ 5, Dušan Lalošević 6,7

1Ambulanta za lajm boreliozu, Služba za prevenciju besnila i drugih zaraznih bolesti, Pasterov zavod / Lyme Borreliosis Outpatient Clinic, Department for Prevention of Rabies and Other Infectious Diseases, Pasteur Institute Novi Sad. Hajduk Veljkova 1 St., 21000 Novi Sad, Republic of Serbia.
2Medicinski fakultet Novi Sad, Univerzitet u Novom Sadu / Medical faculty Novi Sad, University of Novi Sad. Hajduk Veljkova 1 St., 21000 Novi Sad, Republic of Serbia.
3Fakultet Priština sa privremenim sedištem u Kosovskoj Mitrovici, Univerzitet u Prištini sa privremenim sedištem u Kosovskoj Mitrovici./ Faculty of Medical Sciences, University of Pristina – Kosovska Mitrovica. Anri Dinana bb St., 38220 Kosovska Mitrovica, Republic of Serbia.
4Klinika za kožno-venerične bolesti, Klinički centar Vojvodine, / Clinic for Dermatovenereology diseases, Clinical center of Vojvodina, Hajduk Veljkova 1, 21000 Novi Sad Republic of Serbia.
5Služba za istraživanje i praćenje kretanja besnila i drugih zoonoza, Pasterov zavod Novi Sad. / Department for research and monitoring of rabies and other zoonoses, Pasteur Institute Novi Sad. Hajduk Veljkova 1 St., 21000 Novi Sad, Republic of Serbia.
6Služba za mikrobiološku i drugu dijagnostiku, Pasterov zavod / Department for microbiological and other diagnostics, Pasteur Institute Novi Sad. Hajduk Veljkova 1 St., 21000 Novi Sad, Republic of Serbia.
7Katedra za histologiju i embriologiju, Medicinski fakultet Novi Sad, / Department for histology and embryology, Medical faculty Novi Sad, University of Novi Sad. Hajduk Veljkova 1 St., 21000 Novi Sad, Republic of Serbia.

 

UDK: 616.98-07:579.834


The paper was received / Rad primljen: 15.11.2019.

Accepted / Rad prihvaćen: 29.11.2019.

 


Correspondence to:


dr med. Pavle Banović
Ambulanta za lajm boreliozu Služba za prevenciju besnila i drugih zaraznih bolesti, / Lyme Borreliosis
Outpatient Clinic, Department for Prevention of Rabies and Other Infectious Diseases
Pasterov zavod Novi Sad
Hajduk Veljkova 1, 21000 Novi Sad, Republika Srbija
kontakt telefon: 021/420-528
e-mail: ambulanta@pasterovzavod.rs

 

 

Sažetak

 

Migratorni eritem predstavlja najčešću manifestaciju prve (rane) faze lajm borelioze. Definisan je kao crvenilo na mestu uboda krpelja koje se širi. Iako pojava migratornog eritema upućuje na postojanje lokalne infekcije patogenim sojevima bakterija (spiroheta) iz Borrelia burgdorferi sensu lato kompleksa, tačan mehanizam kojim ove spirohete ostvaruju širenje u koži čoveka nisu razjašnjeni. U ovom radu je dat pregled literature, na početku vezan za  interakciju na nivou krpelj-patogen-domaćin, nakon čega su predstavljene najčešće teorije razvoja specifične morfologije migratornog eritema, kao i diferencijalno dijagnostički problemi koji mogu nastati usled infekcije drugim patogenima ili usled razvoja različitih alergijskih i autoimunih stanja.   

 

 

Ključne reči:

migratorni eritem; erythema migrans; borelija; lajm borelioza

 

 

Abstract

 

Migratory erythema is the most common manifestation of the first (early) phase of Lyme borreliosis. It is defined as the spreding rash or redness at the site of the tick bite. Although the occurrence of migratory erythema indicates the presence of local infection with pathogenic strains of bacteria from Borrelia burgdorferi sensu lato complex, the exact mechanism by which spirochetes conduct spreading in human skin has not been elucidated. This paper review the literature, initially related to tick-pathogen-host interaction, after which the most common theories of the development of specific morphology of migratory erythema are presented, as well as differential diagnostic problems that may arise from infection with other pathogens or the development of various allergic and autoimmune conditions.

 

Key words:

migratory erythema; lyme borreliosis; borrelia

 

 

 

References:

  1. Nuttall PA, Labuda M. Tick–host interactions: saliva-activated transmission. Parasitology. 2004 Oct;129(S1):S177–89.
  2. Moutailler S, Valiente Moro C, Vaumourin E, Michelet L, Tran FH, Devillers E, et al. Co-infection of Ticks: The Rule Rather Than the Exception. Vinetz JM, editor. PLoS Negl Trop Dis. 2016 Mar 17;10(3):e0004539.
  3. Bonnet SI, Binetruy F, Hernández-Jarguín AM, Duron O. The Tick Microbiome: Why Non-pathogenic Microorganisms Matter in Tick Biology and Pathogen Transmission. Front Cell Infect Microbiol. 2017;7. http://journal.frontiersin.org/article/10.3389/fcimb.2017.00236/full
  4. Suppan J, Engel B, Marchetti-Deschmann M, Nürnberger S. Tick attachment cement - reviewing the mysteries of a biological skin plug system: Tick attachment cement. Biol Rev. 2018 May;93(2):1056–76.
  5. Šimo L, Kazimirova M, Richardson J, Bonnet SI. The Essential Role of Tick Salivary Glands and Saliva in Tick Feeding and Pathogen Transmission. Front Cell Infect Microbiol. 2017;7. http://journal.frontiersin.org/article/10.3389/fcimb.2017.00281/full
  6. Blisnick AA, Foulon T, Bonnet SI. Serine Protease Inhibitors in Ticks: An Overview of Their Role in Tick Biology and Tick-Borne Pathogen Transmission. Front Cell Infect Microbiol. 2017;7. http://journal.frontiersin.org/article/10.3389/fcimb.2017.00199/full
  7. Kazimírová M, Štibrániová I. Tick salivary compounds: their role in modulation of host defences and pathogen transmission. Front Cell Infect Microbiol. 2013;3. http://journal.frontiersin.org/article/10.3389/fcimb.2013.00043/abstract
  8. Brossard M, Wikel SK. Tick immunobiology. Parasitology. 2004 Oct;129(S1):S161–76.
  9. Cabezas-Cruz A, Hodžić A, Román-Carrasco P, Mateos-Hernández L, Duscher GG, Sinha DK, et al. Environmental and Molecular Drivers of the α-Gal Syndrome. Front Immunol. 2019;10:1210.
  10. Crispell G, Commins SP, Archer-Hartman SA, Choudhary S, Dharmarajan G, Azadi P, et al. Discovery of Alpha-Gal-Containing Antigens in North American Tick Species Believed to Induce Red Meat Allergy. Front Immunol. 2019;10:1056.
  11. de la Fuente J, Pacheco I, Villar M, Cabezas-Cruz A. The alpha-Gal syndrome: new insights into the tick-host conflict and cooperation. Parasit Vectors. 2019 Apr 3;12(1):154.
  12. Mabelane T, Basera W, Botha M, Thomas HF, Ramjith J, Levin ME. Predictive values of alpha-gal IgE levels and alpha-gal IgE: Total IgE ratio and oral food challenge-proven meat allergy in a population with a high prevalence of reported red meat allergy. Pediatr Allergy Immunol Off Publ Eur Soc Pediatr Allergy Immunol. 2018;29(8):841–9.
  13. Nuttall PA. Tick saliva and its role in pathogen transmission. Wien Klin Wochenschr. 2019. https://doi.org/10.1007/s00508-019-1500-y
  14. Labuda M, Kozuch O, Zuffová E, Elecková E, Hails RS, Nuttall PA. Tick-borne encephalitis virus transmission between ticks cofeeding on specific immune natural rodent hosts. Virology. 1997;235(1):138–43.
  15. Voordouw MJ. Co-feeding transmission in Lyme disease pathogens. Parasitology. 2015;142(2):290–302.
  16. Hermance M, Thangamani S. Tick–Virus–Host Interactions at the Cutaneous Interface: The Nidus of Flavivirus Transmission. Viruses. 2018 Jul 7;10(7):362.
  17. Sonenshine DE, Macaluso KR. Microbial Invasion vs. Tick Immune Regulation. Front Cell Infect Microbiol. 2017;7. http://journal.frontiersin.org/article/10.3389/fcimb.2017.00390/full
  18. Figlerowicz M, Urbanowicz A, Lewandowski D, Jodynis-Liebert J, Sadowski C. Functional Insights into Recombinant TROSPA Protein from Ixodes ricinus. PLoS ONE. 2013;8(10). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3800121/
  19. Mbow ML, Gilmore RD, Titus RG. An OspC-Specific Monoclonal Antibody Passively Protects Mice from Tick-Transmitted Infection by Borrelia burgdorferi B31. Infect Immun. 1999;67(10):5470–2.
  20. Ojaimi C, Brooks C, Casjens S, Rosa P, Elias A, Barbour A, et al. Profiling of Temperature-Induced Changes in Borrelia burgdorferi Gene Expression by Using Whole Genome Arrays. Infect Immun. 2003;71(4):1689–705.
  21. Ramamoorthi N, Narasimhan S, Pal U, Bao F, Yang XF, Fish D, et al. The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature. 2005;436(7050):573–7.
  22. Hovius JW, Schuijt TJ, de Groot KA, Roelofs JJTH, Oei GA, Marquart JA, et al. Preferential Protection of Borrelia burgdorferi Sensu Stricto by a Salp 15 Homologue in Ixodes ricinus Saliva. J Infect Dis. 2008;198(8):1189–97.
  23. Kraiczy P, Stevenson B. Complement regulator-acquiring surface proteins of Borrelia burgdorferi: Structure, function and regulation of gene expression. Ticks Tick-Borne Dis. 2013;4(0):26–34.
  24. von Lackum K, Miller JC, Bykowski T, Riley SP, Woodman ME, Brade V, et al. Borrelia burgdorferi Regulates Expression of Complement Regulator-Acquiring Surface Protein 1 during the Mammal-Tick Infection Cycle. Infect Immun. 2005;73(11):7398–405.
  25. Fraser CM, Casjens S, Huang WM, Sutton GG, Clayton R, Lathigra R, et al. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature. 1997;390(6660):580–6.
  26. Lovrich SD, Jobe DA, Schell RF, Callister SM. Borreliacidal OspC Antibodies Specific for a Highly Conserved Epitope Are Immunodominant in Human Lyme Disease and Do Not Occur in Mice or Hamsters. Clin Diagn Lab Immunol. 2005;12(6):746–51.
  27. Aslam B, Nisar MA, Khurshid M, Farooq Salamat MK. Immune escape strategies of Borrelia burgdorferi. Future Microbiol. 2017;12(13):1219–37.
  28. Wilson TC, Legler A, Madison KC, Fairley JA, Swick BL. Erythema migrans:  a spectrum of histopathologic changes. Am J Dermatopathol. 2012;34(8):834–7.
  29. Gebbia JA, Coleman JL, Benach JL. Borrelia Spirochetes Upregulate Release and Activation of Matrix Metalloproteinase Gelatinase B (MMP-9) and  Collagenase 1 (MMP-1) in Human Cells. Infect Immun. 2001;69(1):456–62.
  30. Vieira ML, Nascimento ALTO. Interaction of spirochetes with the host fibrinolytic system and potential roles in pathogenesis. Crit Rev Microbiol. 2016;42(4):573–87.
  31. Lalosevic D, Lalosevic V, Stojsic-Milosavljevic A, Stojsic D. Borrelia-like organism in heart capillaries of patient with Lyme-disease seen by electron microscopy. Int J Cardiol. 2010;145(3):e96-98.
  32. Strle F, Stanek G. Clinical manifestations and diagnosis of lyme borreliosis. Curr Probl Dermatol. 2009;37:51–110.
  33. Hofmann H, Fingerle V, Hunfeld K-P, Huppertz H-I, Krause A, Rauer S, et al. Cutaneous Lyme borreliosis: Guideline of the German Dermatology Society. GMS Ger Med Sci. 2017;15.
  34. Wormser GP, Dattwyler RJ, Shapiro ED, Halperin JJ, Steere AC, Klempner MS, et al. The clinical assessment, treatment, and prevention of lyme disease, human granulocytic anaplasmosis, and babesiosis: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis Off Publ Infect Dis Soc Am. 2006;43(9):1089–134.
  35. Ely JW, Rosenfeld S, Seabury Stone M. Diagnosis and management of tinea infections. Am Fam Physician. 2014;90(10):702–10.
  36. Halberg M. Nummular Eczema. J Emerg Med. 2012;43(5):e327–8.
  37. Leung AKC, Barankin B. An Annular Lesion on the Elbow. Am Fam Physician. 2016;93(5):397–8.
  38. Weber K, Neubert U, Büchner SA. Erythema Migrans and Early Signs and Symptoms. In: Weber K, Burgdorfer W, Schierz G, editors. Aspects of Lyme Borreliosis. Berlin, Heidelberg: Springer Berlin Heidelberg; 1993. p. 105–21. https://doi.org/10.1007/978-3-642-77614-4_8
  39. Niemeyer-Corbellini JP, Lupi O, Klotz L, Montelo L, Elston DM, Haddad V, et al. 36 - Environmental Causes of Dermatitis. In: Tyring SK, Lupi O, Hengge UR, editors. Tropical Dermatology (Second Edition). Elsevier; 2017. p. 443–70.
  40. Rodríguez G, Vargas E, Abaúnza C, Cáceres S. Necrolytic migratory erythema and pancreatic glucagonoma. Biomed Rev Inst Nac Salud. 2016;36(2):176–81.
  41. Mullegger RR. Dermatological manifestations of Lyme borreliosis. Eur J Dermatol EJD. 2004;14(5):296–309.
  42. Strle F, Pleterski-Rigler D, Cimperman J, Pejovnik- Pustinek A, Ruzic E, Stanek G. Solitary borrelial lymphocytoma: Report of 36 cases. Infection. 1992;20(4):201–6.
  43. Glatz M, Resinger A, Semmelweis K, Ambros-Rudolph CM, Müllegger RR. Clinical spectrum of skin manifestations of Lyme borreliosis in 204 children in Austria. Acta Derm Venereol. 2015;95(5):565–71.
  44. Asbrink E, Hovmark A. Early and late cutaneous manifestations in Ixodes-borne borreliosis (erythema migrans borreliosis, Lyme borreliosis). Ann N Y Acad Sci. 1988;539:4–15.

PDF Banović P. et al. • MD-Medical Data 2019;11(3-4): 141-146

 

 

 

Naslovna | Revija | Galerija | Dešavanja | Instrukcije | Redakcija | Izdavač | Prijatelji sajta | Saradnja | Kontakt | Site Map


Back to content | Back to main menu