md-medicaldata


Go to content

Main menu:

 

 

 

 

 

 

 

CIP -  Каталогизација у публикацији
Народна библиотека Србије, Београд
61
MD : Medical Data : medicinska revija = medical review / glavni i odgovorni urednik Dušan Lalošević. - Vol. 1, no. 1 (2009)- . - Zemun : Udruženje za kulturu povezivanja Most Art Jugoslavija ; Novi Sad : Pasterovo društvo, 2009- (Beograd : Scripta Internacional). - 30 cm

Dostupno i na: http://www.md-medicaldata.com. - Tri puta godišnje.

ISSN 1821-1585 = MD. Medical Data
COBISS.SR-ID 158558988


RATIONAL DESIGN OF NEW MEDICINES FOR NEURODEGENERATIVE DISEASES
RACIONALNI DIZAJN NOVIH LEKOVA ZA LEČENJE NEURODEGENERATIVNIH BOLESTI

Authors

 

Rok Borštnar
1Laboratory for Genotoxicity, Pharmacokinetics & Preclinics, Pharmacokinetical & Preclinical R&D, Krka, d.d., Šmarješka cesta 6, 8501 Novo mesto, Slovenia


 

• The paper was received on 21.08.2016. / Accepted on 07.09.2016.

 

Correspondence to:
Rok Borštnar
Laboratory for Genotoxicity, Pharmacokinetics & Preclinics,
Šmarješka cesta 6, 8501 Novo mesto, Slovenia
rok.borstnar@guest.arnes.si

 

 

Abstract

 

Over the last decade, as well as even before, new insights and steps have been made in understanding the mechanism of neurodegenerative diseases such as Parkinson's and Alzheimer's disease are. New findings have also been possible, because of the development of the so called computational part of the research, which is especially useful when it comes to explaining and understanding the mechanisms of action on an atomic or even an electronic scale, thus offering a hint for more successful planning and design of real experiments. Many new approaches for a more rational and effective design of new medicines for Parkinson's disease have been tried out, wherein a very important role have also molecular simulations, especially in elucidating the mechanism of action of the medicine. By using the principles of molecular simulations (molecular modelling) an insight on the metabolic pathway of the medicine once inside the human body could be given. In the article it is based on the concrete examples presented how a  new medicine can be designed for neurodegenerative disease such as Parkinson's disease is.

 

 

Key words

Parkinson's disease, inhibitors, rational drug design, monoamine oxidase, methabolism

 

 

References

 

  1. DeRose VJ, Woo JC, Hawe WP, Hoffman BM, Silverman RB, Yelekci K. Observation of a flavin semiquinone in the resting state of monoamine oxidase B by electron paramagnetic resonance and electron nuclear double resonance spectroscopy. Biochemistry. 1996; 35:11085-11091.
  2. Ding CZ, Lu X, Nishimura K, Silverman RB. Transformation of monoamine oxidase-B primary amine substrates into time-dependent inhibitors. Tertiary amine homologues of primary amine substrates. Journal of medicinal chemistry. 1993; 36:1711-1715.
  3. Ding CZ, Silverman RB. 4-(Aminomethyl)-1-aryl-2-pyrrolidinones, a new class of monoamine oxidase B inactivators. Journal of enzyme inhibition. 1992; 6:223-231.
  4. Ding CZ, Silverman RB. Transformation of heterocyclic reversible monoamine oxidase-B inactivators into irreversible inactivators by N-methylation. Journal of medicinal chemistry. 1993; 36:3606-3610.
  5. Ding Z, Silverman RB. 5-(Aminomethyl)-3-aryldihydrofuran-2(3H)-ones, a new class of monoamine oxidase-B inactivators. Journal of medicinal chemistry. 1992; 35:885-889.
  6. Hiebert CK, Sayre LM, Silverman RB. Inactivation of monoamine oxidase by 3,3-dimethyl analogues of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 1-methyl-4-phenyl-2,3-dihydropyridinium ion. Dramatic effect of beta-mercaptoethanol on substrate turnover and enzyme inactivation. The Journal of biological chemistry.1989; 264:21516-21521.
  7. Hiebert CK, Silverman RB. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine analogues. Inactivation of monoamine oxidase by conformationally rigid analogues of N,N-dimethylcinnamylamine. Journal of medicinal chemistry. 1988; 31:1566-1570.
  8. Miller JR, Edmondson DE. Structure-activity relationships in the oxidation of para-substituted benzylamine analogues by recombinant human liver monoamine oxidase A. Biochemistry. 1999;  38:13670-13683.
  9. Miller JR, Edmondson DE. Influence of flavin analogue structure on the catalytic activities and flavinylation reactions of recombinant human liver monoamine oxidases A and B. The Journal of biological chemistry. 1999; 274:23515-23525.
  10. Jones TZ, Fleming P, Eyermann CJ, Gravestock MB, Ramsay RR. Orientation of oxazolidinones in the active site of monoamine oxidase. Biochemical pharmacology. 2005; 70:407-416.
  11. Jones TZ, Giurato L, Guccione S, Ramsay RR. Interactions of imidazoline ligands with the active site of purified monoamine oxidase A. The FEBS journal. 2007; 274:1567-1575.
  12. Ramsay RR. Kinetic mechanism of monoamine oxidase A. Biochemistry. 1991; 30:4624-4629.
  13. Ramsay RR. Mechanistic study of monoamine oxidase: significance for MAO A and MAO B in situ]. Voprosy meditsinskoi khimii. 1997; 43:457-470.
  14. Ramsay RR, Koerber SC, Singer TP. Stopped-flow studies on the mechanism of oxidation of N-methyl-4-phenyltetrahydropyridine by bovine liver monoamine oxidase B. Biochemistry. 1987; 26:3045-3050.
  15. Ramsay RR, Tan AK, Weyler W. Kinetic properties of cloned human liver monoamine oxidase A. Journal of neural transmission Supplementum. 1994; 41:17-26.
  16. Edmondson DE. Benzylamine analog binding studies as probes of the substrate sites of monoamine oxidases A and B. Drug metabolism reviews. 1999; 31:235-245.
  17. Edmondson DE, Bhattacharrya AK, Xu J. Evidence for alternative binding modes in the interaction of benzylamine analogues with bovine liver monoamine oxidase B. Biochimica et biophysica acta. 2000; 1479:52-58.
  18. Fierro A, Osorio-Olivares M, Cassels BK, Edmondson DE, Sepulveda-Boza S, Reyes-Parada M. Human and rat monoamine oxidase-A are differentially inhibited by (S)-4-alkylthioamphetamine derivatives: insights from molecular modeling studies. Bioorganic & medicinal chemistry. 2007; 15:5198-5206.
  19. Edmondson DE, Mattevi A, Binda C, Li M, Hubalek F. Structure and mechanism of monoamine oxidase. Current Medicinal Chemistry. 2004; 11:1983-1993.
  20. Edmondson DE, Binda C, Mattevi A(. The FAD binding sites of human monoamine oxidases A and B. Neurotoxicology. 2004; 25 63-72.
  21. Edmondson DE. Structure activity studies of the substrate binding site in monoamine oxidase B. Bi ochimie. 1995; 77:643-650.
  22. Wang J, Harris J, Mousseau DD. Mutagenic probes of the role of Ser209 on the cavity shaping loop of human monoamine oxidase A.FEBS J.2009; 276:4569-81.
  23. Milczek EM,Binda C,Rovida S,Mattevi A,Edmondson DE. The 'gating' residues Ile199 and Tyr326 in human monoamine oxidase B function in substrate and inhibitor recognition.FEBS J.2011; 278:4860-9
  24. Li M, Binda C, Mattevi A, Edmondson DE. Functional role of the "aromatic cage" in human monoamine oxidase B: structures and catalytic properties of Tyr435 mutant proteins. Biochemistry. 2006; 45: 4775-4784.
  25. Akyuz MA, Erdem SS, Edmondson DE. The aromatic cage in the active site of monoamine oxidase B: effect on the structural and electronic properties of bound benzylamine and p-nitrobenzylamine. Journal of neural transmission. 2007; 114:693-698.
  26. Borstnar R, Repic M, Kamerlin SCL, Vianello R, Mavri J. Computational Study of the pK(a) Values of Potential Catalytic Residues in the Active Site of Monoamine Oxidase B. Journal of Chemical Theory and Computation. 2012); 8:3864-3870.
  27. Erdem SS, Karahan O, Yildiz I, Yelekci K. A computational study on the amine-oxidation mechanism of monoamine oxidase: insight into the polar nucleophilic mechanism. Organic & biomolecular chemistry. 2006;  4:646-658.
  28. Fierro A, Osorio-Olivares M, Cassels BK, Edmondson DE, Sepulveda-Boza S, Reyes-Parada M. Human and rat monoamine oxidase-A are differentially inhibited by (S)-4-alkylthioamphetamine derivatives: insights from molecular modeling studies. Bioorganic & medicinal chemistry. 2007; 15,:5198-5206.
  29. Binda C, Li M, Hubalek F, Restelli N, Edmondson DE, Mattevi A. Insights into the mode of inhibition of human mitochondrial monoamine oxidase B from high-resolution crystal structures. Proceedings of the National Academy of Sciences of the United States of America. 2003; 100: 9750-9755.
  30. Binda C, Wang J, Pisani L, Caccia C, Carotti A, Salvati P, Edmondson DE, Mattevi A.  Structures of human monoamine oxidase B complexes with selective noncovalent inhibitors: safinamide and coumarin analogs. Journal of medicinal chemistry. 2007; 50:5848-5852.
  31. Binda C, Li M, Hubalek F, Restelli N, Edmondson DE, Mattevi A. Insights into the mode of inhibition of human mitochondrial monoamine oxidase B from high-resolution crystal structures. Proceedings of the National Academy of Sciences of the United States of America.. 2003; 100:9750-9755.
  32. Binda C, Newton-Vinson P, Hubalek F, Edmondson DE, Mattevi A. Structure of human monoamine oxidase B, a drug target for the treatment of neurological disorders. Nature structural biology. 2002;  9:22-26.
  33. Bonivento D, Milczek EM, McDonald GR, Binda C, Holt A, Edmondson DE, Mattevi A. Potentiation of ligand binding through cooperative effects in monoamine oxidase B. The Journal of biological chemistry. 2010; 285:36849-36856.
  34. Binda C, Hubalek F, Li M, Edmondson DE, Mattevi A. Crystal structure of human monoamine oxidase B, a drug target enzyme monotopically inserted into the mitochondrial outer membrane. Febs Letters. 2004; 564:225-228.
  35. Binda C, Hubalek F, Li M, Herzig Y, Sterling J, Edmondson DE, Mattevi A. Crystal structures of monoamine oxidase B in complex with four inhibitors of the N-propargylaminoindan class. Journal of medicinal chemistry. 2004;  47:1767-1774.
  36. Lee CT, Yang WT, Parr RG. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron-Density. Physical Review B. 1988; 37:785-789.
  37. Lee CT, Yang WT, Parr RG. Local Softness and Chemical-Reactivity in the Molecules Co, Scn- and H2co. Theochem-Journal of Molecular Structure. 1988; 40:305-313.
  38. Parr RG. Derivation of a Local Formula for Electron Electron Repulsion Energy. Journal of Physical Chemistry. 1988;  92:3060-3061.
  39. Florian J, Warshel A.  Langevin dipoles model for ab initio calculations of chemical processes in solution: Parametrization and application to phosphate ester hydrolysis and conformational analysis in aqueous solution. Abstracts of Papers of the American Chemical Society. 1997; 214:85-PHYS.
  40. Florian J, Warshel A. Langevin dipoles model for ab initio calculations of chemical processes in solution: Parametrization and application to hydration free energies of neutral and ionic solutes and conformational analysis in aqueous solution. Journal of Physical Chemistry B. 1997; 101:5583-5595.
  41. Florian J, Warshel A. Calculations of hydration entropies of hydrophobic, polar, and ionic solutes in the framework of the Langevin dipoles solvation model. Journal of Physical Chemistry B. 1999; 103:10282-10288.
  42. Hubalek F, Binda C, Li M, Herzig Y, Sterling J, Youdim MBH, Mattevi A, Edmondson DE. Inactivation of purified human recombinant monoamine oxidases A and B by rasagiline and its analogues. Journal of Medicinal Chemistry. 2004; 47:1760-1766.
  43. De Colibus L, Li M, Binda C, Lustig A, Edmondson DE, Mattevi A.Three-dimensional structure of human monoamine oxidase A (MAO A): relation to the structures of rat MAO A and human MAO B. Proceedings of the National Academy of Sciences of the United States of America . 2005; 102:12684-12689.
  44. Florian J, Warshel A.Quantum-chemical insights into mechanisms of the nonenzymatic hydrolysis of phosphate monoesters. Phosphorus Sulfur and Silicon and the Related Elements .1999; 146:525-528.
  45. Florian J, Sponer J, Warshel A. Thermodynamic parameters for stacking and hydrogen bonding of nucleic acid bases in aqueous solution: Ab initio/Langevin dipoles study. Journal of Physical Chemistry B. 1999; 103:884-892.
  46. Warshel A,  Weiss RM.Empirical Valence Bond Calculations of Enzyme Catalysis. Annals of the New York Academy of Sciences. 1981; 367:370.
  47. Borstnar R, Repic M, Krzan M, Mavri J, Vianello R. Irreversible Inhibition of Monoamine Oxidase B by the Antiparkinsonian Medicines Rasagiline and Selegiline: A Computational Study. European Journal of Organic Chemistry, 2011; 120:6419-6433.
  48. Kamerlin SC, Haranczyk M,  Warshel A. Progress in ab initio QM/MM free-energy simulations of electrostatic energies in proteins: accelerated QM/MM studies of pKa, redox reactions and solvation free energies. The journal of physical chemistry B. 2009; 113:1253-1272.
  49. Kamerlin SC, Haranczyk M, Warshel A. Are mixed explicit/implicit solvation models reliable for studying phosphate hydrolysis? A comparative study of continuum, explicit and mixed solvation models. Chemphyschem : a European journal of chemical physics and physical chemistry. 2009; 10:1125-1134.
  50. Ramsay RR, Hunter DJ. Inhibitors alter the spectrum and redox properties of monoamine oxidase A. Biochimica et biophysica acta. 2002; 1601:178-184.
  51. Wouters J, Ramsay R, Goormaghtigh E, Ruysschaert JM, Brasseur R, Durant F.  Secondary structure of monoamine oxidase by FTIR spectroscopy. Biochemical and biophysical research communications. 1995; 208:773-778.
  52. Burykin A, Warshel A. What really prevents proton transport through aquaporin? Charge self-energy versus proton wire proposals. Biophysical journal. 2003; 85:3696-3706.
  53. Shimon Lecht, Simon Haroutiunian,Amnon Hoffman,Philip Lazarovici.Rasagiline – a novel MAO B inhibitor in Parkinson’s disease therapy. Ther Clin Risk Manag. 2007; 3: 467–474.
  54. Taavitsainen F, Anttila M, Nyman L, Karnani H, Salonen JS, Pelkonen O. Selegiline metabolism and cytochrome P450 enzymes: in vitro study in human liver microsomes. Pharmacol Toxicol. 2000; 86:215-21.
  55. Ho-Sang-Shin, Metabolism of Selegiline in humans, Identification, Excretion, and Stereochemistry of Urine Metabolites. DMD. 1997; 25 (6): 657-662.
  56. Hubalek F, Binda C, Khalil A, Murugesan T, Li M, Mattevi A, Castagnoli N, Edmondson D. Structural determinants for reversible inhibitors that specifically bind to human monoamine oxidase B but not to monoamine oxidase A. Faseb Journal. 2004; 18: C191-C191.
  57. Bonivento D, Milczek EM, McDonald GR, Binda C, Holt A, Edmondson DE, Mattevi A. Potentiation of ligand binding through cooperative effects in monoamine oxidase B. The Journal of biological chemistry. 2010; 285:36849-856.
  58. Calculator Plugins were used for structure property prediction and calculation, Marvin 5.11.3, 2012, ChemAxon (http://www.chemaxon.com).
  59. Gaussian 09 RA, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

UDK: 616.8-085.033
COBISS.SR-ID 226160652



PDF Borštnar R. • MD-Medical Data 2016;8(3): 155-164

Naslovna | Revija | Galerija | Dešavanja | Instrukcije | Redakcija | Izdavač | Prijatelji sajta | Saradnja | Kontakt | Site Map


Back to content | Back to main menu